Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks
نویسندگان
چکیده
A Long Short-Term Memory (LSTM) network is a type of recurrent neural network architecture which has recently obtained strong results on a variety of sequence modeling tasks. The only underlying LSTM structure that has been explored so far is a linear chain. However, natural language exhibits syntactic properties that would naturally combine words to phrases. We introduce the Tree-LSTM, a generalization of LSTMs to tree-structured network topologies. TreeLSTMs outperform all existing systems and strong LSTM baselines on two tasks: predicting the semantic relatedness of two sentences (SemEval 2014, Task 1) and sentiment classification (Stanford Sentiment Treebank).
منابع مشابه
Lifted Matrix-Space Model for Semantic Composition
Recent advances in tree structured sentence encoding models have shown that explicitly modeling syntax can help handle compositionality. More specifically, recent works by Socher et al. (2012), Socher et al. (2013), and Chen et al. (2013) have shown that using more powerful composition functions with multiplicative interactions within tree-structured models can yield significant improvements in...
متن کاملDAG-Structured Long Short-Term Memory for Semantic Compositionality
Recurrent neural networks, particularly long short-term memory (LSTM), have recently shown to be very effective in a wide range of sequence modeling problems, core to which is effective learning of distributed representation for subsequences as well as the sequences they form. An assumption in almost all the previous models, however, posits that the learned representation (e.g., a distributed r...
متن کاملMinimum Semantic Error Cost Training of Deep Long Short-Term Memory Networks for Topic Spotting on Conversational Speech
The topic spotting performance on spontaneous conversational speech can be significantly improved by operating a support vector machine with a latent semantic rational kernel (LSRK) on the decoded word lattices (i.e., weighted finite-state transducers) of the speech [1]. In this work, we propose the minimum semantic error cost (MSEC) training of a deep bidirectional long short-term memory (BLST...
متن کاملWord Type Effects on L2 Word Retrieval and Learning: Homonym versus Synonym Vocabulary Instruction
The purpose of this study was twofold: (a) to assess the retention of two word types (synonyms and homonyms) in the short term memory, and (b) to investigate the effect of these word types on word learning by asking learners to learn their Persian meanings. A total of 73 Iranian language learners studying English translation participated in the study. For the first purpose, 36 freshmen from an ...
متن کاملLong Short-term Memory Network over Rhetorical Structure Theory for Sentence-level Sentiment Analysis
Using deep learning models to solve sentiment analysis of sentences is still a challenging task. Long short-term memory (LSTM) network solves the gradient disappeared problem existed in recurrent neural network (RNN), but LSTM structure is linear chain-structure that can’t capture text structure information. Afterwards, Tree-LSTM is proposed, which uses LSTM forget gate to skip sub-trees that h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015